Vol. 9 Issue 1, January 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

COMMON FIXED POINT THEOREM FOR SELF MAP SATISFYING RATIONAL TYPE CONTERACTIVE CONDITON IN CONE RECTANGULAR METRIC SPACE

A. KUMAR

Department of Mathematics D.A.V. College, Kanpur (U.P.) India Email: sri.abhishek66@gmail.com

ABSTRACT

In this paper we have proved a common fixed point theorem by using rational type contraction conditionwhich extends the result of Jaleli and Bessem Samet [6].

Keywords: Cone metric space, cone rectangular metric space, Cauchy sequence and ordered Banach space.

200 AMS Subject Classification: 46EXX, 46E35, 47HXX, 47H10.

Introduction

Huang and Zhang [5] have introduced by an ordered Banach space, and they established some fixed piont theorems for contractive type mappings in a normal cone metric space.

The idea of Branciari [3], Azam, Arshad and Beg [2] extended the notion of cone metric spaces by replacing the triangular inequality by a rectangular inequality. The aim of this paper is to extend the result of Jaleli and Bessem Samet [6] in such spaces.

Definition 1. If E be a real Banach space and a nonempty set X . Suppose that the mapping satisfies

$$0 < d(x,y) \text{ for all } x,y \hat{1} X$$

$$d(x,y) = 0 \text{ if and only if } x = y$$

$$d(x,y) = d(y,x) \text{ for all } x,y \hat{1} X$$

$$d(x,y) \text{ £ } d(x,z) + d(y,z) \text{ for all } x,y,z \hat{1} X.$$

Then distance d is called a cone metric on X and set X with cone metric d is called cone metric space (X,d).

Definition 2. let X be a nonempty set and E be a real Banach space. Suppose the mapping $d: X \ X \ \mathbb{R} \ E$ satisfies

$$0 \, \pounds \, d(x,y)$$
, " $x,y \, \hat{I} \, X$.

$$d(x,y) = 0$$
 if and only if $x = y$.

$$d(x,y) = d(y,x) "x,y \hat{1} X.$$

$$d(x,y) \, \pounds \, d(x,w) + d(w,z) + d(z,y), "x,y \, \hat{1} \, X$$

and for all distinct point $w, z \hat{1} X - \{x, y\}$ (rectangular property).

Then d is called a cone rectangular metric on X and (X,d) is called cone rectangular metric space.

Vol. 9 Issue 1, Januaey 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Lemma 2.1. A sequence $\{x_n\}$ in cone rectangular metric space X is said to be convergent if for every c $\hat{\mathbf{I}}$ E with 0 << c there is n_0 $\hat{\mathbf{I}}$ N such that

$$d(x_n, x) << c \text{ for all } n > n_0.$$

Lemma 2.2. A sequence $\{x_n\}$ in cone rectangular metric space X is said to be Cauchy if for every c $\hat{\mathbf{1}}$ E with 0 << c there is n_0 $\hat{\mathbf{1}}$ N such that

$$d(x_n, x_m) << c \text{ for all } n, m > n_0.$$

If every Cauchy sequence in cone rectangular metric space X is convergent then X is said to be complete cone rectangular metric space.

For c $\hat{\mathbf{I}}$ E with 0 << c there is n_0 $\hat{\mathbf{I}}$ N such that for all $n,m > n_0$ $d(x_n,x_m) << c$ then $\{x_n\}$ is called Cauchy sequence.

A cone rectangular metric space is said to be complete cone rectangular metric space if every Cauchy sequence in X is convergent.

Theorem 1. Let (X,d) be a complete cone rectangular metric space P be a normal cone with normal constant K. Suppose a mapping $f:X \ \mathbb{R} \ X$ satisfying contractive condition

where $a \hat{I} [0, \frac{1}{5})$. Then

 $f\,$ has a unique fixed point in $X\,$

for any $x \ \hat{\mathbf{I}} \ X$, the iterative sequence $f^n x$ converges to the fixed point.

Now for $x \hat{\mathbf{I}} X$ we have

$$d(fx, f^2x) = d(fx, ffx)$$

£
$$\overset{\text{\'e}}{\underset{\text{\'e}}{\underbrace{d(x,fx)d(fx,f^2x)}}} + d(x,fx) + d(fx,f^2x) + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}{\underbrace{(x,fx)d(fx,f^2x)}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}}}}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}{\underset{\text{\'e}}{\underset{\text{\'e}}}}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}{\underset{\text{\'e}}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{\'e}}} + d(x,fx)\overset{\mathring{\downarrow}}{\underset{\text{$$

£
$$2a \oint d(fx, f^2x) + d(x, fx) \mathring{\mathfrak{h}}$$

$$d(fx, f^2x)$$
 £ $\frac{2a}{1-2a}d(x, fx)$

$$d(f^2x, f^3x) = d(ffx, ff^2x)$$

Vol. 9 Issue 1, Januaey 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

£
$$a \stackrel{\text{\'e}}{=} \frac{d(fx, f^2x)d(f^2x, f^3x)}{d(fx, f^2x)} + d(fx, f^2x)d(f^2x, f^3x) + d(fx, f^2x) \stackrel{\text{\'e}}{=} \frac{d(fx, f^2x)d(f^2x, f^3x)}{d(f^2x, f^2x)} + d(fx, f^2x) \stackrel{\text{\'e}}{=} \frac{d(fx, f^2x)d(f^2x, f^2x)}{d(f^2x, f^2x)} + d(fx, f^2x) \stackrel{\text{\'e}}{=} \frac{$$

£
$$a \not\in d(f^2x, f^3x) + d(fx, f^2x) + d(f^2x, f^3x) + d(fx, f^2x) \not\downarrow d(f^2x, f^3x) + d(f^2x, f^3x) + d(f^2x, f^3x) \not\downarrow d(f^2x, f^3x) + d(f^2x, f^3x) + d(f^2x, f^3x) \not\downarrow d(f^2x, f^3x) + d($$

$$d(f^2x, f^3x)$$
£ $\frac{2a}{1-2a}d(fx, f^2x)$

£
$$\underbrace{\overset{\alpha}{\xi}}_{1} = \frac{2a}{2a} \frac{\overset{\alpha}{\circ}}{\overset{\dot{\beta}}{\circ}} d(x, fx)$$

Thus in general, if n is a positive integer then

$$d(f^n x, f^{n+1} x)$$
£ $\underbrace{\frac{\mathfrak{E}}{2a} \frac{2a}{\dot{\underline{e}}}}_{1-2a} \frac{\underline{\underline{o}}^n}{\dot{\underline{e}}} d(x, fx)$

$$d(f^n x, f^{n+1} x)$$
£ $k^n d(x, f x)$

where $k = \frac{2a}{1-a} \hat{1}$ [0, 1) we divide the proof into two case

First case.Let $f^m x = f^n x$ for some m, n $\hat{1}$ N, m^{-1} n. Let m > n. Then $f^{m-n}(f^n x) = f^n x$ i.e. $f^p y = y$ where p = m - n, $y = f^n x$. Now since p > 1 we have

$$d(y,fy) = d(f^p y, f^{p+1} y)$$

$$d(y, fy)$$
£ $k^p d(y, fy)$

Since k Î [0,1) we obtain - d(y,fy) Î P and d(y,fy) Î P which implies that ||d(y,fy)|| = 0 i.e. fy = y.

Secondcase. Assume that $f^m x^{-1} = f^n x$ for all $m, n \hat{1} = N$, $m^{-1} = n$. Clearly, we have

$$d(f^n x, f^{n+1} x)$$
£ $k^n d(x, f x)$

and

Vol. 9 Issue 1, Januaey 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

$$d(f^n x, f^{n+2} x)$$
£ $a \{ (f^{n-1} x, f^n x) + d(f^{n+1} x, f^{n+2} x) \}$

£
$$a\left(k^{n-1}d(x,fx)+k^{n+1}d(x,fx)\right)$$

£
$$k^n d(x, fx) + k^{n+1} d(x, fx)$$

£
$$\frac{k^n}{1-k}d(x,fx)$$

Now if m>2 is odd then writing $m=2l+1, l^3$ 1 and using the fact that f^px^{-1} f^rx for p,r $\hat{1}$ N, p^{-1} r we can easily show that

$$d(f^n x, f^{n+m} x)$$
£ $d(f^{n-1} x, f^n x) + d(f^{n+1} x, f^{n+2} x) + d(f^{n+2l-1} x, f^{n+2l} x)$

£
$$\frac{k^n}{1-k}d(x,fx)$$

Again if m^3 2 is even then writing $m = 2l^3$ 2 and using the same arguments as before we can get,

$$d(f^nx,f^{n+m}x) \pounds d(f^{n+1}x,f^{n+2}x) + d(f^{n+2}x,f^{n+3}x) + \times \times + d(f^{n+2l-1}x,f^{n+2l}x)$$

£
$$k^n d(x, fx) + k^{n+1} d(x, fx) + \times k^{n+2l} d(x, fx)$$

Thus combing all the cases we have

$$d(f^{n}x, f^{n+m}) \, f \, \frac{k^{n}}{1-k} d(x, fx), "m, n \, \hat{1} \, N$$

Hence we get

$$||d(f^n x, f^{n+m} x)||$$
£ $\frac{k^n}{1-k} ||d(x, fx)||, "m, n$ Î N

Since
$$K \frac{k^n}{1-k} || d(x,fx) || \mathbb{R} = 0$$
 as $n \mathbb{R} = 1$

 $\{f^n x\}$ is a Cauchy sequence. By the completeness of X there is $x \hat{1} X$ such that

$$f^n x \otimes x \text{ as } n \otimes + Y$$

We shall now show that $fx^* = x^*$ without any loss of generality, we can assume that fx^{*1} x^* , fx^* for any f N we have

Vol. 9 Issue 1, Januaey 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$d(x^*, fx^*)$$
£ $d(x^*, f^{n+1}x) + d(f^{n+1}x, fx^*)$

£
$$d(x^*, f^n x) + d(f^n x, f^{n+1} x) + a \left\{ d(f^n x, f^{n+1} x) + d(x^*, f x^*) \right\}$$

$$d(x^*, fx^*)$$
 £ $\frac{1}{1-a} \left\{ d(x^*, f^n x) + (1+a)' d(f^n x, f^{n-1} x) \right\}$

Hence

$$||d(x^*,fx^*)| \le \frac{K}{1-a} \{ ||d(x^*,f^nx)|| + (1+a)||d(f^nx,f^{n+1}x)|| \} \otimes 0$$

as $n \otimes Y$

So we obtain $d(fx^*, x^*) = 0$ i.e. $x^* = fx^*$

Now if y * is another fixed point of f, then

$$d(x^*, y^*) = d(fx^*, fy^*) \pounds a \{d(x^*, fx^*) + d(y^*, fy^*)\} = 0$$

which implies that $||d(x^*, y^*)|| = 0$ i.e. $x^* = y^*$.

References

- [1] Abbas M. and Jungck G.: Common fixed point results for non-commuting mappings without continuity in cone metric space. J. Math. Anal. Appl.; 341, 416-420, (2008).
- [2] Azam Akbar, Muhammad Arshad and Ismat Beg: Banach contraction principle on cone rectangular metric spaces. Appl. Anal. Discrete Math. 3, 236-241, (2009).
- [3] Branciari A.: A fixed point theorem of Banach Cacciopoli type on a class of generalized metric spaces. Publ. Debreen, 57, 1-2 (31-37), (2000).
- [4] **Dejan Ilic and Vladimir Rakocevic:** Common fixed point for maps on cone metric space. J. Math. Anal. Appl. 341, 876-882, (2008).
- [5] Huang Long-Guang and Zhang Xian: Cone metric spaces and fixed point theorems of contractive mappings J. Math. Anal. Appl.332, 1468-76, (2007).
- [6] Jaleli Mohamed and Samet Bessem: The Kannan's fixed point theorem in a cone rectangular metric space. The journal of nonlinear sciences and applications 2, 161-167, (2009).